CO2封存是通过工程技术手段将捕集的CO2注入深部地质储集层,实现CO2与大气长期隔绝的过程。全球陆上理论封存容量为(6~42)×1012 t CO2,海底理论封存容量为(2~13)×1012 t CO2;北美地质封存潜力为(2~21)×1012 t CO2,欧洲地质封存潜力约为0.355×1012 t CO2,中国地质封存潜力约为(2.42~4.13)×1012 t CO2[7]。深部咸水层封存容量占比约98%,是目前最主要的碳封存方式;枯竭型油气藏构造完整,地质勘探基础良好,是目前CO2封存的第2大方式[36-38]。
目前咸水层CO2封存潜力评价方法包括容积法、容量系数法、快速直观动态法等[53-55]。根据美国地质调查局(USGS)评估,美国36个盆地累计封存容量约为3×1012 t CO2。全球碳捕集与封存研究院(GCCSI)提出美国拥有(2~21)×1012 t CO2的封存潜力[56]。北美碳封存图册(NACSA)显示,美国和加拿大含油气盆地封存潜力分别为1 200×108 t CO2和160×108 t CO2,咸水层封存潜力分别为(1.610~20.155)×1012 t CO2和(0.028~0.296)×1012 t CO2[7]。墨西哥的咸水层封存潜力超过0.1×1012 t CO2[54]。欧盟Geo Capacity项目评估认为,欧洲含油气盆地封存潜力为300×108 t CO2,深部咸水层的封存潜力为3 250×108 t CO2[7]。日本的CO2地质封存潜力约为1 400×108 t CO2,主要分布在日本岛屿周围面积较大的沉积盆地,包括东京湾盆地、大阪湾盆地、九州地区北部区域及伊势湾盆地[7]。韩国深部咸水层封存潜力约为9.4×108 t CO2,其中北平盆地的封存潜力约为9.0×108 t CO2、浦项盆地的封存潜力约为0.4×108 t CO2;韩国含油气盆地主要为油藏,其中乌龙盆地封存潜力约为30×108 t CO2、济州盆地约为235×108 t CO2、群山盆地约为3×108 t CO2[7]。印度尼西亚、泰国、菲律宾和越南总封存潜力约为540×108 t CO2[56-57]。中国深部咸水层封存容量约2.42×1012 t CO2,主要集中于松辽盆地、渤海湾盆地、四川盆地、鄂尔多斯盆地和准噶尔盆地[58]。其中,松辽盆地(6 950×108 t CO2)、塔里木盆地(5 530×108 t CO2)和渤海湾盆地(4 910×108 t CO2)是最大的3个陆上咸水层封存区域,占总封存量的一半。除此之外,苏北盆地(4 360×108 t CO2)和鄂尔多斯盆地(3 360×108 t CO2)的深部咸水层也具有较大的CO2封存潜力[59]。
4.3 枯竭型油气藏封存潜力
由于单纯的CO2封存项目存在能耗和成本过高、长期封存安全性和可靠性不确定等问题,CO2驱油与封存一体化研究成为油气工业CO2封存的重要方向[37, 60]。目前,全球,全球CO2驱油项目超过140个,其中121个项目在美国,CO2驱油技术主要在美国得到大规模工业应用,年产油量维持在0.15×108 t左右,提高采收率7%~22%,每桶油生产成本18~28美元,已成为其第1大提高采收率技术。近年来,美国以提高采收率25%为目标,积极研发新一代CO2驱油技术,例如纳米颗粒稳态CO2泡沫扩大波及体积技术、增加CO2驱油流度控制的硅酸盐聚合物凝胶研究、CO2驱油与封存规划软件研究、CO2驱油中的流度控制与地质力学模拟器研究、用于改善流度控制的小分子缔合CO2增稠剂研究等。从全球开展的CCS项目数和封存量上看,CO2捕集、驱油与封存(CCS-EOR)是主要方式和方向(见表1)。中国在20世纪60年代就在大庆油田探索CO2驱油技术,先后开展了国家“973”、“863”及国家重大专项等科技攻关,建成了吉林、长庆的CO2驱油与封存示范区。截至2020年,中国共进行过21次CCUS封存试验、总封存量约为130×104 t CO2[7]。CCUS试验包括吉林、大庆、长庆和新疆等实验区的项目,其中吉林油田现场CCUS已连续监测14年,验证了油藏封存安全性(见表1)。从衰竭型油藏封存量看,在松辽盆地、渤海湾盆地、鄂尔多斯盆地和准噶尔盆地,通过CO2强化石油开采技术(CO2-EOR)可以封存约51×108 t CO2;从衰竭型气藏封存量看,在鄂尔多斯盆地、四川盆地、渤海湾盆地和塔里木盆地,利用枯竭气藏可以封存约153×108 t CO2,通过CO2强化天然气开采技术(CO2-EGR)可以封存约90×108 t CO2。
4.4 陆地碳汇
陆地碳汇是指陆地从大气圈中吸收并储存碳的总量,陆地碳库存在于陆地岩石圈、生物圈和土壤圈等[61]。岩石圈是地球上最大的碳库,据估计整个岩石圈碳总储量约为9×1016 t CO2,其中有机碳储量约为2×1016 t CO2,其中化石燃料中碳储量约为(5~10)×1012 t CO2[62-63],地球共有约10×1016 t CO2[64]。生物圈碳储量约为0.686×1012 t CO2,其中森林占662×108 t CO2,草原占240×108 t CO2[65]。土壤圈碳总储量为(1.4~1.5)×1012 t CO2[66-69]。总体来看,1850—2018年全球碳循环系统源-汇体系碳排放-吸收量基本平衡(见图8),表明全球生态系统正扮演着积极的碳汇角色。1900—2005年,美国陆地累计碳汇为(35.1~213.1)×108 t CO2,俄罗斯陆地累计碳汇为(57.8~129.3)×108 t CO2,加拿大陆地累计碳汇为(35.3~125.8)×108 t CO2。总体来看,美国、欧洲、加拿大和俄罗斯1900—1949年的陆地碳排放分别被1950—1989年的陆地碳吸收所抵消(或基本抵消),从而使1990年后的陆地生态系统处于净吸收状态。通过对近20年来中国耕作土壤有机碳储量分析[70],估算得到中国耕作土壤的年平均碳汇为(0.41~0.71)×108 t CO2。中国《国家温室气体清单》表明,1994—2014年温室气体排放量增长非常快,2014年的排放量是2004年的3.3倍。与此同时,土地利用、土地利用变化与林业(LULUCF)碳汇量增长速度也较快,从1994年的4.07×108 t CO2增加到2014年11.25×108 t CO2,增加了1.76倍。2014年LULUCF的碳汇量占碳排放量的10.94%。从碳收支情况看,中国陆地生态系统正起着碳汇作用。图8 全球碳循环系统源-汇体系碳排放-吸收量分布(据文献[7]修改)
4.5 海洋碳汇
海洋碳汇指海洋吸收大气中的CO2,并用各种方式将其固定在海洋中的总量,地球上约93%(38.4×1012 t)的CO2储存在海洋中。因此,利用海洋“碳汇”作用,发展海洋低碳技术,对实现中国“双碳”目标具有重要意义。2018年,深圳大鹏新区率先开展覆盖辖区海域的海洋碳汇核算研究,编制中国首个《海洋碳汇核算指南》,预示中国将开始大力发展海洋碳汇[7]。4.5.1 固碳机理海洋固碳机理主要有两类,即受CO2分压影响的物理固碳和海洋动植物参与的生物固碳,又可进一步划分为海洋物理固碳、深海封储固碳、海洋生物固碳。海洋物理固碳是通过海洋物理泵的作用,海水中的CO2-碳酸盐体系向深海扩散和传递,最终变成碳酸钙,沉积于海底,形成钙质软泥,从而起到固碳作用。深海封储固碳是通过在深海形成CO2稳定水合物,在遭受最高烈度地震或其他地质剧变也能保持稳定,能够保证几千年“安全无逃逸”;预计封储在深海海底的液态CO2可稳定保存2 000年以上,因此成为未来最理想的储藏方法。海洋生物固碳主要通过藻类、珊瑚礁、贝类进行固碳,通过光合作用固定CO2,将无机碳转化为有机碳。考虑到分布范围、固碳效率及生态环境,珊瑚礁固碳作用巨大,或成为永久固碳的最佳方式。4.5.2 海洋生态体系固碳海洋贮碳量约是大气的50倍,以千年为时间单位考虑,海洋对调节大气中CO2含量发挥了决定性作用。碳主要贮存在深海生物软泥、湿地等环境。其中,广袤深海洋底发育的深海生物软泥约有1.2×1016 t CO2以有机沉积物的形式存在。全球沿海湿地分布面积约20.3×104 km2,固碳量约为4.5×108 t CO2/a。同时,沿海湿地大量存在的硫酸根阻碍了CH4的产生,从而降低了CH4的排放量。高的碳积累速率和低的CH4排放量,使沿海湿地对大气温室效应的抑制作用更加明显。海洋是除地质碳库外最大的碳库,也是参与大气碳循环最活跃的部分,海洋的固碳能力约为38.4×1012 t CO2,年新增储存能力为(5~6)×108 t CO2。碳元素在海洋中主要以颗粒有机碳、溶解有机碳和溶解无机碳3种形态存在。不同海域吸收或释放CO2的能力具有差异,赤道太平洋是最大的海洋“碳源区”,而北大西洋、北太平洋是大气CO2最重要的“碳汇区”,南大洋是另一个重要的CO2汇聚区域。原因是表层海水温度越低,其吸收CO2的能力越强,在北大西洋、北太平洋和南大洋区域均存在寒冷的表层水沉降,且生物生产力较高。南大洋仅占全球海洋面积的6%,但吸收的CO2却占海洋吸收总量的40%。中国渤海、黄海、东海和南海的面积约4.73×106 km2,其海洋生态系统的区域碳循环在全球碳循环过程中占有重要地位,以年为尺度,渤海、黄海、东海、南海均表现为“碳汇”。海洋科技界比较公认的研究结果为:渤海每年可从大气中吸收约284×104 t CO2,黄海每年吸收约900×104 t CO2,东海可吸收约0.3×108 t CO2。南海因面积巨大,而且位处热带海域,迄今尚无可信的调查测算结果[71]。